An Image Sparse Representation for Saliency Detection
نویسندگان
چکیده
This paper presents a novel method for detecting saliency in static images based on image sparse representation. For each color channel, first, the image is partitioned into non-overlapping patches and each patch is represented by the way of sparse coding from a learned dictionary of patches from natural scenes. Then, global saliency and local saliency are calculated and fused to attain saliency of each patch. Local saliency is shown by popping out a patch from its surrounding patches. Global saliency is indicated by the rarity of a patch in the overall patches of the image. The final saliency map is attained by normalizing and fusing local and global saliency maps of all color channels. Experimental results in the benchmark image dataset demonstrate that the proposed method achieves a superior performance compared with most of state-of-the-art methods. Furthermore, both robustness and the low computational complexities make the presented algorithm feasible for subsequent applications.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملSaliency Detection Using Sparse and Nonlinear Feature Representation
An important aspect of visual saliency detection is how features that form an input image are represented. A popular theory supports sparse feature representation, an image being represented with a basis dictionary having sparse weighting coefficient. Another method uses a nonlinear combination of image features for representation. In our work, we combine the two methods and propose a scheme th...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملAlgorithms for image saliency via sparse representation and multi-scale inputs image retargeting.
Saliency detection is an important yet challenging task in computer vision. In this report we investigate the use of sparse coding over redundant dictionary for saliency detection. We attempt to present a small fraction of the growing knowledge regarding sparse representation over redundant dictionary and discuss some potential usage of this powerful tool for saliency detection task. We propose...
متن کامل